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Abstract

Smartphones are becoming ubiquitous in everyday life and malware is exploiting these

devices. Therefore, a means to identify the threats of malicious applications is necessary.

This paper presents a method to classify and analyze Android malware through application

component analysis.

The experiment parses select portions from Android packages to collect features using

byte sequences and permissions of the application. Multiple machine learning algorithms

classify the samples of malware based on these features. The experiment utilizes instance

based learner, naı̈ve Bayes, decision trees, sequential minimal optimization, boosted naı̈ve

Bayes, and boosted decision trees to identify the best components that reveal malware

characteristics.

The best case classifies malicious applications with an accuracy of 99.24% and an

area under curve of 0.9890 utilizing boosted decision trees. This method does not require

scanning the entire application and provides high true positive rates. This thesis investigates

the components to provide malware classification.
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EXAMINING APPLICATION COMPONENTS

TO REVEAL ANDROID MALWARE

I. Introduction

The classification of malicious applications is a difficult problem. The creators of

malware do not openly disclose the methods that they use to exploit systems. They

are constantly finding new methods to obfuscate their malicious programs. The possibility

of malware infecting mobile devices and smartphones affect multiple facets of users. Users

do not use smartphones only for making phone calls, but also for shopping, and banking.

For this reason, protecting the devices requires a means to detect malware on the Android

platform.

The Android Operating System (OS) is a platform on both smartphones and tablets.

Applications are available for Android to perform many different tasks related to gaming,

social networking, news, and productivity. A popular location to download applications

from is the Google Play service formerly known as the Google Market [22]. If consumers

use Google Play as the exclusive distributor of applications, they should not need to worry

about downloading malicious applications that may cause harm to devices or personal

information. Yet Google Play has distributed malicious applications in the past [4].

In addition to Google Play, other sources for applications include downloading directly

from third party markets or websites. When many options are available as sources of

applications, a method to detect malicious applications is necessary [51].

The approach in this experiment is to utilize n-grams to classify Android applications.

An n-gram is a sequence of bytes from a data source of length n. The experiment extracts

the n-grams using three sources found inside of the Android application package. These
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three files describe the contents and intentions of the application. This research uses these

three files rather than examining the entire application package. In addition to the n-gram

extraction, this research also considers application permissions. This research only selects a

portion of the features using calculations from the information gain of the samples. Lastly,

six different machine learning algorithms classify the samples using the selected features.

1.1 Research Goals and Hypothesis

The overall goal of this research is to classify an Android application as either

malicious or benign. The term benign describes the applications identified as “not

malicious” according to current anti-virus tools. Goals associated with this research

are to determine the best performing machine learning algorithm and feature source to

accomplish the overall goal. Aspects of these schemes include the following:

1. Determine which file or feature source provides the best classification. The

experiment extracts three files from each application that are information rich

concerning the applications use and its attributes. The experiment also utilizes the

permissions of the application as an additional feature source. The best approach has

the highest successful detection rates.

2. Determine which classifier gives the highest accuracy. The experiments use four

different base classifiers to evaluate each of the files. Boosting applies to two of the

classifiers to increase their performance. Overall, the experiment has six classifiers,

four non-boosted and two boosted variants.

3. Determine if specific n-grams classify applications more accurately than other n-

grams. An n-gram or set of n-grams may give rise to specific phrases that may be

useful in classifying the intent of an application.

A feature source containing the ranked n-grams from all three files used should provide

successful classification. From the individual feature sources, the hypothesis is that the

2



classes.dex may have the best results for classification because it contains the source

code for the application. This file can be large in some cases and may not provide the

fastest approach. The fastest approach may come from the permission badging. Badging

is command to extract the application permissions and does not require any additional

unpacking.

1.2 Research Contributions

This research contributes to the field of Android malware classification. This research

parses files in the application into n-grams to find an effective and fast means for

classification. This research also compares the effectiveness of permissions and n-gram

feature sources in Android malware classification. This research also uses chaining of n-

grams found in the feature set to find clues that would lead to the intention of the malicious

applications. This research makes the following contributions to the field of Android

malware classification and n-gram studies:

• Identify a feature source in the applications that classifies at a high rate of accuracy

in Section 4.4.8.

• Test the effectiveness of multiple classifiers on detecting Android malware in Section

4.4.

• Analyze sequences of n-grams to identify malware intention in Section 4.3.1

1.3 Summary

This section introduces the problem of classifying malicious Android applications. It

describes the goals associated with the experiment and describes the initial approach to the

problem. Lastly, the section describes the research contributions.
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II. Literature Review

2.1 Overview

This chapter discusses the portions of Android architecture and applications pertinent

to this research. This section also reviews the previous work of others in the field of

mobile malware classification and security. An understanding of the internals of an Android

application is necessary to understand where possible exploits may occur and to select the

best feature sources. This literature review focuses on research in the last five years related

to the Android environment and the use of machine learning algorithms. Research includes

both dynamic and static analysis of applications. Lastly, this chapter reviews classifiers

and machine learning principles used in the experiment. These classifiers are Naı̈ve Bayes,

Instance Based Learner, Decision Trees, and Sequential Minimal Optimization (SMO).

2.2 Android Architecture

Android is a mobile Operating System (OS) developed to run on devices such as

mobile phones and tablets. The applications use a modified Java Virtual Machine called

the Dalvik Virtual Machine. The Dalvik Virtual Machine operates on devices with lower

resources than personal computer such as mobile phones. Application developers use

the Java programming language during development. The compiler converts the source

code to Dalvik byte code to run on the device. The Android OS runs on a Linux-based

architecture. The applications are in .apk packages downloaded from Google Play or

other locations. These packages contain files that run in a Dalvik Virtual Machine. Tools

exist that convert the Dalvik code into Java classes [46]. The .apk application packages

also contain an AndroidManifest.xml file, which contains information for the Android

OS. This information includes permissions to interact with the OS and capabilities that

the application requires. In the .apk file is the classes.dex file, which contains the

4



compiled application code. This portion contains the Dalvik byte code that runs on the

Android device [21]. Zip utilities such as gzip or unzip can unpack the compressed

Android applications.

To use aspects of the device to access the Internet or send Short Message

Service (SMS) messages, the Android application must declare permissions in the

AndroidManifest.xml file. The permissions tell the system that the application

has access to pertinent system Application Programming Interface (API) calls. The

default permissions use the following syntax, android.permission.RESOURCE. Custom

permissions for API’s follow the namespace.permission.RESOURCE syntax. Not all

APIs require permissions to run. The Android Software Development Kit (SDK) [20]

provides a utility, aapt, to dump information about applications. This utility is able to

dump the permissions for an application as seen in Figure 2.1.

uses-permission: android.permission.ACCESS WIFI STATE

uses-permission: android.permission.WRITE SMS

uses-permission: android.permission.RECEIVE BOOT COMPLETED

uses-permission: android.permission.VIBRATE

uses-permission: android.permission.READ SMS

uses-permission: android.permission.RECEIVE SMS

uses-permission: android.permission.SEND SMS

uses-permission: android.permission.DISABLE KEYGUARD

uses-permission: android.permission.READ CONTACTS

uses-permission: android.permission.WRITE CONTACTS

uses-permission: android.permission.INTERNET

uses-permission: android.permission.ACCESS NETWORK STATE

uses-permission: android.permission.READ PHONE STATE

uses-permission: android.permission.CALL PHONE

Figure 2.1: Example Android permissions from aapt output

At build time, the packing process adds the .dex files and the manifest files to the

.apk package. In addition to these, the packing process adds all other resources to the
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package. The resources.arsc contains the resource table of the resources contained in

the application [21].

2.3 Android Malware

This paper will explore detection of Android malware applications. Sources of

malware include self-propagating malware on mobile devices that spread via Voice over

Internet Protocol or Multimedia Message Service (MMS) [17]. Other sources of infection

include via Internet, synchronizing to a computer, or peer-to-peer to other cell phones [24].

Additionally, there are proofs of concept to drain cellphone batteries through SMS [40].

Felt, et al. analyzed 46 samples of malware for three different platforms, which

included 18 Android samples [16]. Among these samples, the most common malicious

applications collected user information and sending premium rate SMS messages. Felt

specified seven different incentives for mobile malware:

• novelty and amusement,

• selling user information,

• stealing user credentials,

• making premium-rate calls and SMS,

• SMS spam,

• search engine optimization, and

• ransom.

F-Secure discovered the first virus on mobile phones, which was on a Palm device in

2000 [30]. One of the first mobile viruses was Cabir, which infected multiple platforms

and spread via Bluetooth. The virus would prompt nearby users asking if they wanted to

receive a message and infect the device when the user accepted the message. Other early

6



versions of viruses masqueraded as games. The Metal Gear virus appears to be a video

game released to other platforms that is available to mobile devices. Once the user installs

the game, the malware disables the tools on the phone that would be able to remove the

program and sends another virus via Bluetooth to other users.

Mobile viruses that exploit the SMS and Bluetooth services are possible [8]. In 2004,

Dagon, Martin, and Starner predicted multiple malicious uses for applications on mobile

devices [11]. Such methods may include information theft, such as stealing data from

the device or find the location of the user by broadcasting their location. Unsolicited

information may also be a threat by placing advertisements on the device that the user

did not intend to appear. Denial of Service attacks may also appear that will not allow the

user to use a specific service on the device.

Zhou and Jiang have more than 1,200 samples of Android malware found in the

Google Play market and other third party markets [50]. The malware in their analysis

have the following payloads:

• privilege escalation - application gains higher privileges on the phone than necessary

to perform otherwise unauthorized actions,

• remote control - application allows a central server to control the device without

informing the user,

• financial charge - application uses services that charge the users without their

knowledge, and

• information collection - application gathers information on the user such as phone

numbers and other account information.

2.4 Related Work

As more malicious applications appear on the Android platform, multiple researchers

have attempted to identify these applications [6, 9, 14, 42, 44, 45, 49, 53]. Methods
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include using static and dynamic analysis of the application and measuring performance

on the device. Security is important because personal information stored on the device and

applications may request more permissions than necessary.

2.4.1 Detecting Android Malware Through Dynamic Analysis.

In 2012 Shabtai, et al. created a framework to identify malware based on behavior

[45]. The framework analyzed system metrics, such as the processor consumption, network

usage, number of processes and battery usage. In this study, they selected sets of 10, 20,

and 50 features out of a possible 88 features. They attempted to use classifiers such as k-

means, logistic regression, histograms, decision trees, Bayesian networks (BN), and Naı̈ve

Bayes. At the time of this experiment, Shabtai et al. were unable to locate true malicious

applications. They had to create their own for this experiment. Their dataset only included

four malicious applications. Through these experiments they determined that Naı̈ve Bayes

and Logistic Regression were the best performing classifiers.

Another attempt at classifying applications on Android is “Crowdroid” [9]. This

approach utilizes dynamic means to classify applications. This novel approach uses the

technique of crowd sourcing to complete the task. This method utilizes an application

available on the Google Android market that monitors Linux Kernel system calls and sends

the logs from multiple users to a central server to cluster using k-means to determine if

the application is malicious. Each test utilizes benign versions and malicious versions

of the same applications and classifies the trace of system calls. Due to the lack of

known malicious Android applications, they wrote three malicious programs and had two

known malicious applications from other sources. Through recording multiple call traces

of applications, the approach was able to classify 100% traces of their own malware, but

only identified the actual malware traces 85% of the time using clustering.

The Kirin security service performs certification on applications to mitigate the threat

of malware [14]. The service looks at the permissions and services that the application
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requests and compares them to a set of defined rules. These rules include requesting to

record audio or location tracking via Global Positioning System (GPS). Upon comparing

these permissions to the rules, the application would tell the user if the application failed

a safety check. They tested 311 applications from the Android Google Market and 12 of

these applications gave warnings of being malicious. The applications themselves may

not be malicious, but still allow the application more permissions than necessary for the

application’s use.

2.4.2 Detecting Android Malware Through Static Analysis.

Static methods provide a method to analyze the application without requiring

installation, but may not provide as much insight as dynamic analysis. Shabtai, et al.

attempted to classify Android applications through static analysis [44]. The experiment’s

goal is to classify between tools, games and not malicious applications. In this experiment,

they looked at the different elements in Android Manifest XML files, the classes.dex file

and aspects of the .apk file, including file size and methods. To classify the applications,

they utilized classifiers such as decision trees, naı̈ve Bayes, Bayesian networks, Partial

Decision Trees (PART), boosted Naı̈ve bayes (NB), boosted Decision Trees (DT), random

forest, and voting Feature Intervals. The experiment showed that the Boosted DT classifiers

and Bayesian Networks were the best classifiers tested.

Schmidt, et al. used static analysis for malware detection on Android [42].

Using a dataset of 240 malicious samples, they extracted the names of functions and

calls inside already installed executables. They classified the application using three

different classifiers: PART, Prism, and nearest neighbor algorithms. The system utilizes

collaboration with other devices to improve the classification.

Wu, et al. built the framework DroidMat to detect malware on Android [49]. DroidMat

looks at elements in the AndroidManifest.xml file and API calls to classify applications.

DroidMat used 238 malicious applications from Contagio Mobile [33] and 1,500 benign
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applications from the Android Market. Wu used a k-means algorithm to classify the

samples. The framework was able to classify samples at a 97.87% accuracy rate using

this method.

Zhu, et al. reviewed the text of an application description and observed the

permissions that the application requests [53]. The dataset in this experiment included

5,685 applications downloaded from the Android Market. For the experiment, they selected

23 specific permissions and then selected dominant words in the application description.

Zhu then classifies the words as positive or negative based on the action the permission

allows. Positive words are ones that would be normal permission behavior. Negative words

describe the permission use in a manner in an unsafe manner. They used this method to

identify if the application is abnormal based on the presence of positive and negative words.

The framework was able to get a 90% true positive rate, but had a 30% false positive rate.

Meaning that they were able to properly identify 90% of the malware, but improperly

classify 30% of the benign samples as malicious.

2.4.3 Combination of both Static and Dynamic Analysis.

Bläsing, et al. proposed a sandbox environment to both statically and dynamically

classify applications on the Android platform [6]. In the static analysis, Bläsing is searching

decompiled applications for the usage of System.getRuntime().exec, permissions,

and interprocess communications. The dynamic analysis aspect of the research records

system calls. Through their experiments Bläsing, et al. used 150 applications from the

Google Market. They use a self-written fork bomb application to test malware samples.

The sandbox environment successfully detects the fork bomb application. The sandbox

environment does no other malicious tests due to the lack of known malicious applications

at the time.
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2.4.4 Malware Detection on Non-Android Mobile Platforms.

SmartSiren was another approach to detect malicious applications on smartphones

[10]. The framework was for a Windows Mobile device rather than an Android platform.

The SmartSiren approach reports activities to a central server to perform the detection.

Agents on the devices send reports anonymously to a proxy through SMS traces. The

platform explores the various infection methods such as Bluetooth, MMS, Internet,

Universal Serial Bus (USB), and peripheral connections. SmartSiren calculates the

effectiveness of detection through statistical monitoring of the behavior.

Bose, Hu, Shin and Park proposed a behavioral malware detection framework on the

Symbian devices [7]. They utilize behavior signatures that are events generated by the

application and specifically looking at single or a collection of possible malicious events.

One behavior that the framework monitors to generate signatures are the Symbian API

calls. The proposed system examines samples that only affect the Symbian OS. The

framework classified malware utilizing Support Vector Machine (SVM)’s with an accuracy

of 96%.

Another attempt to detect malicious applications on the Symbian platform was from

Liu, Yan, Zhang, and Chen [31]. The research utilized battery consumption of the

mobile device for detection. They assumed that malicious applications would cause more

battery usage than normal applications. In this implementation, they used Decision Trees,

Neural Networks, and Linear Regression to classify the presence of malicious activity by

monitoring battery consumption. The implementation successfully identified the presence

of Cabir and FlexSpy which are viruses for the Symbian platform.

An additional attempt to detect Symbian Malware was Schmidt, Clausen, Camtepe,

and Albayrak by looking at application function calls [43]. In their experiment, they used

33 malicious applications and 49 benign applications. From these applications, only 2,620

unique function calls existed. Using Centroid Machines, Naı̈ve Bayes, and Binary SVM to
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classify the programs using the function calls as the features. Through their research, they

noted that most malicious applications on Symbian used Bluetooth to spread. The results

of their experiments showed that the Centroid Machines had the highest accuracy, but the

Binary SVM had the highest true positive detection rate.

Table 2.1 shows a summary of the experiments that perform machine learning in

order to classify mobile applications. Each of the experiments are looking at different

features and classifiers than the experiment in this paper. Experiments of others that share

features or classifiers with this experiment are in bold. For example, Shabtai looks at

the classes.dex and the AndroidManifest.xml, but does not perform analysis via n-

grams.

2.4.5 Platforms for Privacy Security.

Enck, Octeau, McDaniel, and Chaudhuri studied more than 1,000 Android applica-

tions [13]. They developed a decompiler for Android applications to analyze the source

code to find different security vulnerabilities. Through this study, they found that many

applications had potential security holes.

TaintDroid developed by Enck, et al. tracks passed messages between Android

applications to detect possible malicious applications [12]. TaintDroid tracks possible

privacy leaks and not specifically malware classification. TaintDroid tracks information

flow between applications by adding markers to different variables. These markers are able

to tell if an application is passing privacy-sensitive information to another application with

little overhead. They were able to identify 30 applications from the Google Market that

pass private information. The applications passed information such as the phone number

and Subscriber Identity Module (SIM) card serial number to other applications.

Park, et al. proposed a framework to detect unauthorized access to root privileges [37].

The main purpose is to combat specific types of malware that attempt privilege escalation

on Android such as Droid-KungFu, DroidDream, and GingerMaster. The framework
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Table 2.1: Comparison of experiment features and classifiers

Shabtai 2010 [44]
Features APK Features, classes.dex, AndroidManifest.xml

Classifiers Decision Trees , Naı̈ve Bayes, Bayesian Networks, PART, Boosted BN, Boosted DT,

Random Forest, Voting Feature Interval

Andromaly [45]
Features Application Level, Operating System, Scheduling, Memory, Keyboard, Network,

Hardware, Power

Classifiers k-means, Logistic Regression, Histograms, Decision Trees, Bayesian Networks, Naı̈ve

Bayes

Crowdroid [9]
Features System metrics from multiple users

Classifiers k-means

SmartSiren [10]
Features Bluetooth, MMS, Internet, USB, Peripheral Connections

Classifiers Statistical Monitoring

VirusMeter [31]
Features Battery Consumption

Classifiers Logistic Regression, Neural Networks, Decision Trees

Schmidt 2009 [42]
Features Function Calls

Classifiers PART, Prism, Nearest Neighbor

Schmidt 2009[43]
Features Function Calls

Classifiers Centroid Machine, Naı̈ve Bayes, SVM

DroidMat [49]
Features Permissions, Function Calls

Classifiers K-means, Nearest Neighbor, Naı̈ve Bayes

Zhu 2012 [53]
Features Permissions, Intention Words

Classifiers Naı̈ve Bayes

Bose 2008 [7]
Features System Events, API calls

Classifiers SVM

Guptill
Features n-grams, Permissions

Classifiers Instance Based, Naı̈ve Bayes, Decision Trees, SVM(SMO), Boosted DT, Boosted NB

prevents privilege escalation through a pWhitelist and a Criticallist. The pWhitelist is a

list of applications that have access to root privileges while the Criticallist is a list of

resources that even root users cannot modify. This prevents applications that gain root

from using critical resources. This framework was capable of preventing an application

from gaining root privileges.
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2.4.6 Protection Through Managing Permissions.

Felt, et al. created Stowaway which maps API calls to permissions that an application

uses [15]. Stowaway determines which applications have unnecessary permissions. They

used Stowaway on 940 applications from the Android Market. Their tests showed that

one-third of the applications tested had permissions that were not necessary..

Nauman, Khan, and Zhang proposed a framework which would allow for enforcement

of permissions on Android [34]. The motivation for this problem is that the user must allow

all permissions when installing an application. They developed Poly, which extends the

current Android application installer. Poly gives the user the ability to block or constrain to

a number of uses for specific permissions at install time. They do not describe the impact

of Poly on the application when an application attempts to exercise the denied permission.

Ongtang, McLaughlin, Enck, and McDaniel presented Secure Application INTerac-

tion (SAINT) which manages application permissions both at install time and during run-

time [36]. The SAINT installer gathers the permissions and the package’s signatures and

checks these permissions with a preset policy. When the applications run, SAINT contin-

ues to interact with the applications. The system monitors when applications start, when

applications receive messages from other applications, when applications access content

providers, and when the applications needs to access system APIs.

Zhou, Zhang, Jiang, and Freeh proposed a framework to add additional permission

specifications to protect sensitive information on the Android platform [52]. An example

of sensitive information is GPS location or user information. The framework provides a

manager for application permissions on the device. The user is able to change privacy

settings for each application, giving the user the capability to provide true data, mock data,

or no data for that specific setting.

Beresford, Rice, Skehin, and Sohan at the University of Cambridge proposed a

modified version of the Android OS to add another layer of security [5]. The main
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change to the OS is to the Package Manager service and performs checks on API calls

and permissions. The OS, Mock-Droid, provides false data to applications to prevent them

from getting access to sensitive information. The framework allows the user to restrict

access so the application is able to run, but not with sensitive information. Permissions

that can be restricted include GPS data, Internet connectivity, or access to other phone

functions.

Hornyack, et al. built a system that adds privacy protection such that applications are

unable to send out protected information [26]. Protected information may include phone

state, contacts, or SMS or MMS messages. The additional security blocks the applications

from getting to the sensitive information. This removes the primary motivations of

Android malware as discussed in §2.3. After running their tests on applications, they saw

blocking these messages caused side effects such as removing advertisements, causing the

application to be less functional, or completely breaking the application in 34% of the

applications.

2.4.7 Security through different markets.

The main route of Android application distribution is through the market Google Play.

Google Play has hosted malicious applications in the past. A study by Zhou et al. shows

that at least 32 malicious applications were on the site in May to June 2011 [51]. Google

may have removed these applications, but the possibility to infect devices is still present.

DroidRanger is a system developed at North Carolina State University to detect ma-

licious applications on markets [51]. The system performs both permission-based filter-

ing and behavioral matching to detect known malware. In the permission based filtering,

DroidRanger filters out applications that do not use permissions present in malicious ap-

plications. The second step looks at the rules within the AndroidManifest.xml, the API

calls invoked by the application, and the application structure. Another part of DroidRanger

attempts to detect unknown Android malware through heuristics. These heuristics include
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flagging if the application is running native code or dynamically loading remote binary

code. Overall, the system detected 211 malicious applications from five different markets

with a total of 204,040 samples. This method only used two heuristics to identify malicious

applications and more heuristics exist to detect different types of malware.

Multiple solutions exist to improve security from the distribution point rather than

from the device. These solutions would attempt to find malicious applications and remove

them from the market. Announced in February 2012, Google began to develop a Bouncer

which is an automated service that will approve applications before distributing them to

the public [32]. Google also released an application verification service with the release of

Jellybean Android 4.2 that allows application validation on the device to ensure they are

not malicious. The service uploads information such as the SHA1 value, version, and the

URL associated with the application to the cloud for evaluation. Jiang at North Carolina

State University tested this new service utilizing the same set of malicious applications used

in this experiment [27]. Googles service only detected 193 of the 1260 known malicious

applications. The Google service may only check against known malware samples in their

database and may not identify previously unknown samples that DroidRanger could.

2.5 n-grams in Malware Detection

Kolter and Maloof utilized machine learning to detect malicious Windows Portable

Executable (PE) files [29]. They extracted n-grams from the Windows PE files to classify

the applications. To select the best n-grams as features they calculated information gain

to the counts of unique n-grams in each classifying set. The following information gain

equation calculates the value:

IG( j) =
∑

v j∈{0,1}

∑
C∈{Ci}

P(v j,C)log
P(v j,C)

P(v j)P(C)
(2.1)

where the class C either malicious or harmless, and v j represents the count of n-grams in

the class set. They utilize the following classifiers: the instance-based learner, naı̈ve Bayes,
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SVM, decision trees, and boosted variants except for naı̈ve Bayes. They use Weka, a

machine learning suite from The University of Waikato [25] to train and test the classifiers.

They collected 1,971 benign executables and 1,651 known malicious executables. From

their results they calculate the areas under the ROC curves shown in Table 2.2.

Table 2.2: Kolter Maloof experiment results

Method AUC

Boosted Decision Trees 0.9958±0.0024

SVM 0.9925±0.0033

Boosted SVM 0.9903±0.0038

IBk, k = 5 0.9899±0.0038

Boosted Naı̈ve Bayes 0.9887±0.0042

Decision Trees 0.9712±0.0067

Naı̈ve Bayes 0.9366±0.0099

They found that this method was highly effective in detecting malicious applications.

In the paper they calculate the Receiver Operating Characteristic (ROC) curves using the

posterior probability of the negative class which were the benign samples. Overall, they

found that the boosted decision trees were the best classifier tested using this method with

an area under the curve of 0.9958±0.0024.

Abou-Assaleh, et al. also use n-grams to detect malicious Windows PE files [1].

The data set in this experiment involves 25 malicious and 40 benign samples. In this

experiment, they vary the size of the n-grams and the length of the profile. In training,

they detect high accuracy when the size of the n-gram is greater or equal than three. The

final experiment performs 3-fold cross validation and detects an average accuracy of 98%.
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The experiment explores the use of n-grams in malicious code detection, but only uses a

small set of samples.

2.6 Classifiers

When discussing the topic of classifying items in relation to machine learning, a

background in the topic of each classifier is necessary. Other experiments discussed in the

literature review utilized different classifiers. The research in this thesis only uses select

number of classifiers.

2.6.1 Naı̈ve Bayes.

Naı̈ve Bayes is a classifier that assumes that each of the features, Fi, are conditionally

independent [28]. Let p(C) be the probability of the class and p(Fi|C) be the probability of

a feature for the given class C. The classifier selects the class with the highest probability

in the following equation:

p(C)
∏

i

p(Fi|C). (2.2)

This classifier works best on datasets where the features are conditionally independent.

Datasets with dependent features cause the effectiveness of Naı̈ve Bayes to drop [48].

2.6.2 IBk.

The instance based learner is a lazy algorithm [2]. The instance based learner saves

all of the training samples and compares the test samples to each of the members of the

training set until it finds the closest match. Weka implements the instance based algorithm

as a k-nearest neighbor classifier. The Weka implementation sets Euclidean distance as the

default distance algorithm [48].

2.6.3 Sequential Minimal Optimization.

An implementation of SVM in the Weka suite is SMO [38]. The SVM maps the

samples on multiple dimensions. The SVM and SMO algorithms classify the samples

by calculating a separator between the two classes and then maximizing the width of
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this margin [41]. To solve the problem of multiple dimensions, SMO calculates the

maximization by splitting the problem into smaller parts. Each problem consists of

optimizing two multipliers in order to maximize or minimize the solution. The algorithm

solves the smallest first and adds these to the overall optimization. The classifier uses either

a Gaussian or a polynomial kernel to map the data.

2.6.4 Decision Trees.

A decision tree is a classifier that generates a tree [39]. The decision tree assigns a

prediction to a sample when it traverses the tree and reaches a leaf node. The algorithm

traverses the tree starting at the root of the tree. The tree consists of decision nodes, which

is a test on an attribute to split the population of samples. The node evaluates each sample

to check the next branch to traverse based on the value of the node. The classifier assigns

the sample a label based on the value of the end leaf node.

2.6.5 Boosting Algorithms.

Boosting is a method to improve the performance of classifiers, such as decision trees

or naı̈ve Bayes [18]. In AdaBoost.M1, a classifier runs multiple times to reduce the error.

The first iteration all of the instances have the same weight. As the iterations continue, the

boosting process adds weights to the instances from the results of the classifier runs. The

weight of the instances may change depending on the output of the classifier [48]. Once all

the runs are complete, the boosting algorithm returns the result.

2.7 Summary

In summary, this chapter reviews the background in the field of Android malware

research. The understanding of the Android application structure shows where exploits

may occur. In order to carve out the research that this research performs, Table 2.3

shows others research and the fields that apply to this experiment. The experiment in

this paper covers the use of n-grams, permissions, and static analysis in order to classify

Android applications. Though this paper discusses the topic of dynamic malware analysis
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for Android, the experiment only uses static analysis. Lastly, this section discussed the

different classifiers in this experiment.

Table 2.3: Review of Android malware classification

Research Field Source Guptill Research

n-grams [1, 29] •

Permissions Studies [15, 34, 36, 52] •

Dynamic Analysis [9, 13, 14, 37, 43, 45, 51, 53]

Static Analysis [42, 44, 49, 51, 53] •
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III. Experimental Design

3.1 Overview

This chapter discusses the experimental design to accomplish the classification of the

Android applications. The problem definition describes the approach and goals for this

experiment. This chapter also presents the various aspects of the system under test such as

the system boundaries, the system services, workload, and system parameters. Finally, the

section describes the evaluation technique for the experiment.

3.2 Approach

The approach in this research is to use machine learning algorithms with different

feature sources to detect malicious Android applications. These feature sources include the

following:

• classes.dex,

• resources.arsc,

• AndroidManifest.xml, and

• application permissions.

The approach of this research is the use of n-grams on the first three feature sources. This

research utilizes n-grams because gathering them is efficient and represents sequences

of instructions or revealing patterns in a file. Three files always exist at the root of

the Android application .apk. These files are the classes.dex, resources.arsc,

and the AndroidManifest.xml. The resources.arsc file contains a list of resources

for the application. The classes.dex contains the classes that represent the Dalvik

bytecode of the application. The AndroidManifest.xml contains the intent, activities,

and permissions for the application. This research extracts these three files from each
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Android application and scans for four byte n-grams with a one byte sliding window

as shown in Figure 3.1. The sliding window allows every four-byte sequence to have

representation. This experiment selects sequential n-grams as features they represent an

entire phrase and not just the initial four bytes. This experiment uses four byte length

n-grams which is the same as Kolter and Maloof [29].

ABCDEFGHIJK...

ABCD

BCDE

CDEF

Contents of File

First n-gram

Second n-gram

Third n-gram

Figure 3.1: n-gram extraction

This research utilizes information gain to select the top features from each source. The

information gain calculation assigns a value that indicates if a feature is more representative

of a class. The information gain value is calculated with the following equation:

IG( j) =
∑

v j∈{0,1}

∑
C∈{Ci}

P(v j,C)log
P(v j,C)

P(v j)P(C)
, (3.1)

where v j is the value of the feature j and C represents the class i. The P(v j,C) is the

probability of a feature given a specific class [29].

To calculate the information gain the feature extractor counts the presence of each n-

gram only once per sample. For instance, if a feature source contains multiple instances of

a specific n-gram, the n-gram is only counted once. The experiment consists of two sample

sets, a set of known malicious applications and a set of benign applications. The n-gram
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count for each sample set is a sum of all n-gram counts for each application. Information

gain uses the n-gram counts from the class sets to calculate an information gain value

for each n-gram. This research combines the three file sources into an additional feature

source. For each application the n-gram extractor also counts an aggregate of the unique

n-grams for all three feature sources to create a “combined” feature source.

From the four n-gram based feature sources, the extractor sorts the n-grams by their

information gain values. Kolter and Maloof tested different numbers of features with

classifiers and found that 500 features provided the best results for their selected classifiers

[29]. This experiment only uses the top 500 n-grams from each feature source for the

selected features since this research uses the same classifiers as Kolter and Maloof.

In addition to looking at the effectiveness of n-grams, the framework analyzes the

permissions with the same classifiers. The Android SDK provides a tool, aapt that returns

the permissions of each application. aapt does not require the overhead of unpacking

the application. Other researchers also use permissions as features in their work [49, 53].

The framework leverages this tool to extract the permissions and create two new sets of

features. One set of features uses the extended permission name. An example of this is

android.permission.INTERNET for the Internet access permission. The other set uses

the tail of the permission. This case only uses INTERNET to identify the internet access

permission. The framework also gives each permission an information gain value and

ranking as with the n-grams.

The framework runs the features, AndroidManifest.xml, textttresources.arsc,

classes.dex, combined n-grams, full permissions, and permission tail through seven

classifiers using Weka [25]. The experiment uses the following classifiers:

• instance based learner,

• naı̈ve Bayes,
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• decision trees,

• SMO,

• boosted naı̈ve Bayes, and

• boosted decision trees.

3.3 System Boundaries

The system under test is the Android Application Classification System (AACS). The

AACS implements machine learning algorithms to detect malicious applications. A set of

1,260 malicious and a set of 16,577 benign Android samples serve as the workload. The

system parameters are the selected classifiers to classify the applications and the feature

sources. The components of the system under test are the Sample Parsing, the Information

Gain Calculation and Sorting, Feature Extraction and the Sample Classification. The

component under test is the Sample Classification. The Sample Parsing component

parses the samples for n-grams from the file feature sources and the permissions and

counts the unique features in each sample set. The Information Gain Calculation and

Sorting calculates the information gain values of the n-grams in each feature source. This

component then ranks the n-grams and permission based on the resulting information gain

values. The Feature Extraction component selects and extracts the top 500 n-grams from

each file based feature sources. There are only 1,083 unique full permissions and 557

permission tails in the sample sets. The Feature Extraction component uses all permissions

to extract features. The Sample Classification component uses the selected classifiers to

classify the samples using the feature sources. The system under test outputs the accuracy,

the Area Under Curve (AUC) of the ROC curves, and the classification results.
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Figure 3.2: System under test

3.4 System Services

The primary service of the system under test is the classification of Android

applications. The underlying services that the system provides: extracting n-grams from

the applications, calculating information gain for each n-gram, selecting the highest n-

grams based on information gain, extracting selected n-grams from the applications, and the

eventual classification of the applications. the applications for the n-grams, ranking based

on the information gain, collecting features based on the rank and the eventual classification

of the applications. The output of the overall system service is if an application is malicious

or not malicious.

3.5 Workload

The workload is a set of Android applications collected from different sources. The set

consists of 1,260 Android malware samples and 16,577 assumed non-malicious samples.

The experiments use the samples on all classifiers and parsing methods. The size of

Android applications varies from a few kilobytes to multiple megabytes.
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Developers build the applications for different versions of the Android OS depending

on the available Android SDK. Each new version of the SDK may add new security features

or tools. The first two charts in Figure 3.3 show the version of the OS the developers used to

create the samples in the experiment. The third chart is the market distribution of Android

OS version in January 2013 [23]. The malware samples are from August 2010 to September

2011, while the benign samples are from July 2012 to August 2012. Even though the

samples are from different years they are still built with the same Android versions. The

chart only represents 937 of the 1,260 malicious samples and 16,198 of the 16,577 benign

samples. The build date information is not available for all of the applications in the sample

sets.
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Figure 3.3: Sample set Android version and market share

The set of malicious applications are from the Android Malware Genome Project

at North Carolina State University [50]. This set contains 1,260 different malicious

applications from 49 different malware families. The families and the count of the

application in each family are in Table 3.1. VirusTotal antivirus service independently
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validated malicious applications from NCSU as malware [47]. VirusTotal uses multiple

antivirus utilities to check if a sample is malicious.
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Table 3.1: Malicious samples

Android Malware

Family Name Number of Samples Family Name Number of Samples

ADRD 22 GingerMaster 4

AnserverBot 187 GoldDream 47

Asroot 8 Gone60 9

BaseBridge 122 GPSSMSSpy 6

BeanBot 8 HippoSMS 4

Bgserve 9 Jifake 1

CoinPirate 1 jSMSHider 16

CruseWin 2 KMin 52

DogWars 1 LoveTrap 1

DroidCoupon 1 NickyBot 1

DroidDeluxe 1 NickySpy 2

DroidDream 16 Pjapps 58

DroidDreamLight 46 Plankton 11

DroidKungFu1 34 RoughLemon 2

DroidKungFu2 30 RoughSPPush 9

DroidKungFu3 309 SMSReplicator 1

DroidKungFu4 96 SndApps 10

DroidKungFuSapp 3 Spitmo 1

DroidKungFuUpdate 1 Tapsnake 2

Endofday 1 Walkinwat 1

FakeNetflix 1 YZHC 22

FakePlayer 6 zHas 11

GamblerSMS 1 Zitmo 1

Geinimi 69 Zsone 12

GGTracker 1
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The benign samples come from various third-party Android markets across the

Internet. Table 3.2 indicates the sources and number of samples for the benign set of

applications. The sources for the benign samples may contain duplicates between each set.

The combined count is the total number of unique samples from both sources. There are

16,577 total benign samples in this experiment. This set may potentially contain malicious

samples. VirusTotal validated the samples as benign in October 2012. VirusTotal provides

reports for each sample uploaded from multiple anti-virus products. If at least one product

from VirusTotal identifies a sample as possibly malicious, the experiment does not include

the sample in the benign set.

Table 3.2: Sources for benign samples and counts

Source Number of Samples Collected

nduoa.com [35] 14,105

APKTOP [3] 2,964

Combined 16,577

3.6 Performance Metrics

As the framework processes samples it classifies them as either malicious or non-

malicious. The framework knows the true classification of each sample. The system

evaluates the number of true positives, false positives, true negatives, and false negatives

from of each classifier and parsing method. The experiment utilizes bootstrapping to

calculate 95% confidence intervals for each of the performance metrics.

3.6.1 Classification Results.

One primary metric output from the system is the classification result. This output

includes the average true positive (TP), false negative (FN), true negative (TN), and false

positive (FP) rates for each classifier. The equations for the rates are in Table 3.3. In
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addition to this, the classification result report the average numbers of classified samples in

each of the previously mentioned categories.

Table 3.3: Classification rates for results

TP
TP + FN

FP
FP + TN

FN
TP + FN

TN
FP + TN

3.6.2 ROC curves.

The ROC curve is an additional metric to measure the effectiveness of the feature

source with the classifier. The ROC is a plot of true positive rate against the false positive

rate of the classifier. The AUC of the ROC gives a value to the represent the performance

of the classifier. In this experiment, the positive result is the malicious classification.

3.7 System Parameters

The system parameters are the selected classifier and the feature source for the

applications. The following machine learning algorithms are the classifiers:

• instance based learner (IBk),

• naı̈ve Bayes,

• decision trees,

• SMO,

• boosted naı̈ve Bayes, and

• boosted decision trees.
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These classifiers are the same machine learning algorithms that Kolter and Maloof

[29] use in their experiments. Their experiments utilize n-grams in a similar fashion to the

parsing methods in this experiment. Kolter and Maloof extract n-grams from Windows PE

files. This experiment extracts n-grams from specific locations in the Android application.

This experiment does not use the boosted SMO classifier that Kolter and Maloof use in

their experiment due to the time to complete the experiments.

The other set of system parameters are the feature sources. The feature sources are the

n-grams extracted from the classes.dex, resources.arsc, and the AndroidManifest.xml.

An additional n-gram based feature source is the aggregate n-grams from these three file

sources. The last two feature sources are the permissions from the applications represented

as the full permission and the permission tail.

This experiment does not consider the specific parameters to the hardware running the

evaluations. The intention of this research is to classify applications correctly before they

reach the device. This research is hardware independent.

3.8 Evaluation Technique

The experiment is the measurement of a real system. The system classifies actual

Android applications. The experiments run on a virtual machine running Ubuntu 12.04

LTS with 128 GB of memory allocated. The virtual machine resides on a Dell PowerEdge

R810 with 512 GB of memory running Ubuntu 12.04 LTS. The system runs inside of a

virtual machine due to the presence of malicious samples. The algorithms to parse and

perform feature collection are in C++ version 4.6. The classifiers are part of the Weka

suite [25].

3.9 Experimental Design

A full factorial design evaluates the effectiveness of each factor of classifier and feature

source combination. The six selected classifiers and six parsing methods result in 36
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different experiments. Each run utilizes 10 k-fold cross-validation. The experiment is run

with 10 replications to show that consistent results with respect to false positives and true

positives given by each run as well as ROC curve values.

3.10 Summary

This research presents a system that classifies Android applications as malicious

or non-malicious using machine learning algorithms. The system uses actual Android

applications collected from various sources. The system uses n-grams from three separate

sources and permissions to attempt to classify the malicious applications. These include

looking at the classes.dex, resources.arsc, and the AndroidManifest.xml file in

the .apk package. The classifiers in this experiment are the instance based learner, naı̈ve

Bayes, decision trees, and SMO. This experiment uses a boosting algorithm on naı̈ve Bayes

and the decision trees. The experiments run as measurements on a real system while the

algorithms to perform the parsing with C++ and classification with Weka. The goal is to

determine which feature source and classifier provides the highest detection rate with the

lowest number of false positives.
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IV. Results and Analysis

4.1 Overview

This chapter presents the results of the Android malware classification problem as

described in Chapter 3. The experiment consists of three parts to classify the applications.

The first aspect of the research is to extract the features from the application through n-

gram parsing and dumping permissions of the files. The second part involves calculating

the information gain of each feature and selecting the top 500 features. The last section of

the experiment is classifying the samples using the features and classifiers selected.

4.2 Data Extraction

The first aspect of the experiment is determining the features necessary to allow for an

effective classification of the Androfid applications. The experiment extracts two types of

features from the sample applications. The framework utilized three files in the application

to extract n-grams. Additionally, the framework dumps the permissions of the samples to

generate the second set of features. The permission set consists of two types of permissions,

the full permission and the permission tail.

4.2.1 N-gram Extraction and Analysis.

The initial types of features extracted in this experiment are n-grams. The

framework parses three files extracted from the application for n-grams. The files are the

AndroidManifest.xml, classes.dex, and the resources.arsc. The method to parse

the n-grams is a sliding window format of four-byte chunks from the three designated files.

The parsing algorithm also tracks an aggregate of the unique n-grams of the three files

from the Android applications. Of the Android sample set, each Android application has

an average of 233,016 unique n-grams in the classes.dex file that is much larger than the

average 1,696 or 18,156 n-grams in the AndroidManifest.xml and resources.arsc
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sources. The classes.dex has more unique n-grams because the file size is much

larger than both the AndroidManifest.xml and the resources.arsc. Additionally, the

classes.dex consists of byte code while the AndroidManifest.xml contains specific

formats for permissions, intents and other information about the application. The benign

set contains a total of 238,674,477 unique n-grams and the malicious set of application

contains 28,779,383 unique n-grams.

4.2.2 Permission Extraction.

In a similar fashion to the n-grams, the parser counts the permissions for each sample.

Just as with the n-grams, the permissions have separate counts for each sample set. This

process does not require the extractor to unpack the application. A utility provided with the

Android SDK [20], aapt, is able to dump the permissions in plain text for each sample.

The parser counts the full permission name and the tail of the permission. Both datasets

contain 1,082 unique full permissions and 556 unique permission tails phrases.

4.3 Information Gain results

The next component is the information gain calculation. This calculates the

information gain after the parser extracts the n-grams from the sample sets. Each feature

source has a count of unique n-grams in each sample set. The information gain formula

uses counts from the malicious and benign set to calculate an information gain value for

each n-gram. The last part of this process ranks the n-grams based on their information

gain value. This experiment only uses the top 500 n-grams as features for the classifiers.

The top n-grams from the individual feature sources do not share any unique n-grams

with the other feature sources. The feature sources may share n-grams, but there is no

overlap with the top n-grams. The information gain values of the n-grams in those files

may not be high enough to be in the top 500 n-grams of their feature source. The n-grams

found in the top 500 n-grams of the combined files contains 479 of the 500 top n-grams

from the classes.dex source.
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Additionally, 19 of the n-grams in the combined source are from the top 500 n-grams

of the AndroidManifest.xml file. These 19 n-grams are in the top 22 n-gram values

for the AndroidManifest.xml file. Since the combined feature source includes n-grams

from all three n-gram sources, the presence of mutual n-grams changes the value in the

combined source. The addition of the AndroidManifest.xml n-grams to the combined

file may increase the effectiveness of the combined feature source.

In Figure 4.1 the information gain values from the AndroidManifest.xml start higher

than the other feature sources. The top information gain values in AndroidManifest.xml

are higher than the other feature sources. By the 11th n-gram, the values of the AndroidManifest.xml

drop below the information gain values of the classes.dex and the combined feature

sources. The resources.arsc almost has a linear change in information gain for the top

n-grams.

4.3.1 Chaining of n-grams.

Observation of the top n-grams shows an overlap of the bytes between n-grams. For,

example as seen in Figure 4.2 the top two n-grams in hexadecimal representation from

classes.dex have three bytes that overlap. The first three bytes of the first n-gram

(Ox9D83EFBC) are the same as the last three bytes of the second n-gram (OxE69D83EF).

The fact that the n-grams are from the same source, have the same information gain and

parsed using a sliding window of one byte, they may be part of the same byte sequence.

The resulting sequence is OxE69D83EFBC. The other top ten n-grams from each source

exhibit similar patterns as seen in Figure 4.2.
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Figure 4.1: Information gain value results

l9ttt277D2975

l10tttttttttt2975778D
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l6tttttttttttttttt035E1754

l1ttt634C6803

Resources.arsc

l1ttt0042004F
l2ttttttt42004F00
l5ttttttttttt004F004F
l6ttttttttttttttt4F004F00

l3ttt0053004D
l4ttttttt53004D00
l7ttttttttttt004D0050
l8ttttttttttttttt4D005000

l9ttt001D0061
l10ttttt1D006100

AndroidManifest.xmlClasses.dex

l1ttttttt9D83EFBC
l2tttE69D83EF

l3ttttttttA681726F
l4tttttttttttt81726F6F

l7tttE8A68172

Figure 4.2: Overlapping top 10 n-grams from each source

The n-gram sequences chained together may provide insight into the reasons for the

selected n-grams in the top 500 for having high information gain values. To find all likely
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sequences a script finds all n-grams within each source with three overlapping bytes. A

single n-gram may have multiple n-grams that can create a sequence. For example, the

n-gram Ox74E69D83 is able to connect to OxE69D83OO or OxE69D83E9. The result is

two chained sequences. When the chaining continues, the possibility exists of one of the n-

grams repeating if it matches the three-byte condition of chaining. In this case, the problem

of chaining becomes a cyclic graph. The chaining algorithm ignores repeats and attempts

a different matching n-gram.

Every other byte in the n-grams from the AndroidManifest.xml is zero, such as

OxOO4FOO42 or Ox4FOOF2OO. The high number of zeros in the AndroidManifest.xml

n-grams increases the number of overlapping n-grams. To control the number of possible

chains, the chaining algorithm checks number of times the n-gram occurs in the malicious

set. If the count is within a limit then the algorithm appends the n-gram to the end of the

sequence. The algorithm attempts to make the longest chains possible. The main goal of the

limit is to minimize the algorithm from creating too many AndroidManifest.xml chains.

When the count limit is set to ten, the number of chains produced from the classes.dex

is the same as when it is not set. The number of sequences in the resources.arsc is 559

when set and 563 when not set.

The chaining algorithm creates 509 unique chains from top 500 n-grams for the

classes.dex source. Table 4.1 shows the first 23 chains produced from the classes.dex

source. The n-gram position in the table is the rank of the information gain value of

the first n-gram in the chain. The ASCII representations of the n-gram chains are in the

third column. The table only shows the bytes that have ASCII readable characters. If the

hexadecimal for the byte is beyond the readable ASCII characters then column omits the

character. The ASCII representation of the chain shows both the phrase roo and oot are

highly ranked chains. Since the algorithm only checks for an overlap of three bytes and not

two bytes, the algorithm does not generate the chain root. The .dex format has a strings
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section in ASCII, but the encoding of the rest of the file is in LEB128 (Little-Endian Base

128) [19]. The fourth column shows the average number of times that the n-grams that

create the chain occur in the malware sample set. The n-grams that make up the root

phrase occur in the malware sample set 453 and 487 times. According to Zhou [50], who

provided the samples, 36% or 453 of the samples attempt to use root level exploits. This

number is close to the average times the phrase occurs in the malware.

Table 4.1: ASCII interpretation of top n-gram chains for classes.dex

n-gram

Position

n-gram chain ASCII of chain Average counts

in Malware Set
1 Ox9D83EFBC [����] 527
2 OxE69D83EFBC [�����] 527
3 OxA681726F6F [��roo] 467
4 Ox81726F6F [�roo] 467
5 Ox3D5A84O5 [=Z��] 464
6 Ox9D83E7AEA1 [�����] 465
7 OxE8A681726F6F [���roo] 467
8 Ox999OE6898D [�����] 464.5
9 Ox1E5A5A1CO5 [�ZZ��] 464

10 Ox6F74E69D83E7AEA1 [ot������] 466.2
11 Ox74E69D83E7AEA1 [t������] 466
12 Ox83E7AEA1 [����] 465
13 Ox6F6F74E69D83E7AEA1 [oot������] 466.333
14 Ox8CE68E88 [����] 464
15 Ox1FE99C8O [����] 448
16 OxOO1FE99C8O [ ����] 448
17 Ox1C2F7368 [��/sh] 449
18 OxOB73737469 [�ssti] 449.5
19 Ox152F6461 [�/da] 521
20 OxA18CE68E88 [�����] 464

The chaining algorithm produces 4,839 chains from the top 500 n-grams from

the AndroidManifest.xml. The n-grams contain alternating null bytes (OxOO). The

AndroidManifest.xml file is in a binary XML format with strings in Unicode. The top

24 chains from the AndroidManifest.xml file show phrases that are common in malware

that Zhou identifies [50]. Zhou has identifies that 83.3% or 1,125 of the malware from the
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sample use the BOOT COMPLETED system event. The n-gram chains from positions 1, 2,

7, 8, 11,12, 21 and 22 in Table 4.2 all have about the same number of occurrences in the

malware set. The chaining algorithm does not create the full phrase of BOOT COMPLETED.

The sections of the phrase, T , ET, and TE, occur in more manifest permissions than the

other portions of the phrase BOOT COMPLETED. The frequency of these sections in other

permissions may change the overall information gain value of the n-gram and not include it

in the top 500 n-grams. Malicious applications utilize the BOOT COMPLETED event to start as

soon as the device has completed booting. The chain from position 3, SMS, is also common

among malicious applications. The algorithm generates chains that are permissions found

in malware samples.

Table 4.2: ASCII interpretation of top n-gram chains for AndroidManifest.xml

n-gram

Position

n-gram chain ASCII of chain Average counts

in Malware Set
1 OxOO42OO4FOO4FOO [ B O O ] 1,125.5
2 Ox42OO4FOO4FOO [B O O ] 1,127
3 OxOO53OO4DOO53OO [ S M S ] 894
4 Ox53OO4DOO53OO4D [S M S M] 894
5 OxOO4FOO4FOO [ O O ] 1,130
6 Ox4FOO4FOO4F [O O O] 1,130
7 OxOO4DOO5OOO4COO45OO [ M P L E ] 1,083.67
8 Ox4DOO5OOO4COO45OO [M P L E ] 1,086.6
9 OxOO1DOO61OO [ a ] 923
10 Ox1DOO61OO [ a ] 923
11 OxOO5OOO4COO45OO [ P L E ] 1,091
12 Ox5OOO4COO45OO [P L E ] 1,092.67
13 OxOO59OO5FOO42OO [ Y B ] 906
13 OxOO59OO5FOO41OO4EOO [ Y A N ] 919.333
14 Ox59OO5FOO42OO [Y B ] 903.667
14 Ox59OO5FOO41OO4EOO [Y A N ] 920.6
15 OxOO45OO44OOOOOO2COO [ E D , ] 1,158.67
16 Ox45OO44OOOOOO2COO [E D , ] 1,158.6
17 OxOO52OO59OO [ R Y ] 651
18 Ox52OO59OO [R Y ] 651
19 OxOO43OO54OO [ C T ] 988
20 Ox43OO54OO [C T ] 988
21 OxOO4FOO4DOO5OOO4COO45OO [ O M P L E ] 1,083.75
22 Ox4FOO4DOO5OOO4COO45OO [O M P L E ] 1,083.71
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4.3.2 Top Permissions with Information Gain.

There are only 556 unique permission strings with permission tails and 1,082

unique permissions with the full permission string. Table 4.3 shows the top ten

permissions with the highest information gain values. The top four permissions relate

to SMS. The previous section shows that the phrase SMShas a high information

gain value in the AndroidManifest.xml file. According to Zhou, 45.3% of the

malicious applications send and receive SMS messages [50]. Additionally, the permission,

RECEIVE BOOT COMPLETED, is in the AndroidManifest.xml file as seen in the

previous section.

Table 4.3: Top 10 permissions by information gain value

Permission Information Gain Value
android.permission.READ SMS 1.584209753
android.permission.WRITE SMS 1.535876854
android.permission.SEND SMS 1.373848696
android.permission.RECEIVE SMS 1.371761714
android.permission.RECEIVE BOOT COMPLETED 1.369654341
android.permission.WRITE APN SETTINGS 1.343876281
android.permission.READ PHONE STATE 1.305217899
android.permission.WRITE CONTACTS 1.297509651
android.permission.ACCESS WIFI STATE 1.28330626
android.permission.CALL PHONE 1.267492607

4.4 Classification Results

In the previous sections, this experiment creates six different feature sets. Utilizing

the suite Weka from the University of Waikato, six different machine-learning algorithms

classify each of the feature sets [25]. The classifiers in this experiment are the same

classifiers as Kolter and Maloof with the exception of the boosted SMO [29]. The next

section will discuss the results of the classification experiments.
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4.4.1 resources.arsc Results.

The resources.arsc feature source performs the worst among the other feature

sources in the experiment. Table 4.4 shows the comparison of the resources.arsc to

the other feature sources with each classifier. The table indicates that in each test there is

a statistical improvement of using the other feature sources over resources.arsc. The

mean AUC for resources.arsc across classifiers is 0.6412 which is significantly less

than the other feature sources.

Table 4.4: ROC area under the curve comparison to resources.arsc

Dataset resources.arsc Combined classes.dex

IBk 0.6738(0.6692–0.6782) - 0.9808(0.9791–0.9824) ◦ 0.9608(0.9587–0.9629) ◦

Naı̈ve Bayes 0.6140(0.6087–0.6187) - 0.9114(0.9085–0.9140) ◦ 0.8605(0.8564–0.8642) ◦

Boosted NB 0.6189(0.6142–0.6238) - 0.9458(0.9432–0.9481) ◦ 0.8351(0.8311–0.8393) ◦

Decision Trees 0.6568(0.6520–0.6613) - 0.9556(0.9530–0.9580) ◦ 0.9458(0.9430–0.9488) ◦

Boosted DT 0.6817(0.6773–0.6858) - 0.9751(0.9731–0.9769) ◦ 0.9550(0.9523–0.9575) ◦

SMO 0.6021(0.5986–0.6058) - 0.8159(0.8119–0.8201) ◦ 0.8139(0.8100–0.8182) ◦

Dataset AndroidManifest.xml Full Permission Permission Tail

IBk 0.9841(0.9825–0.9857) ◦ 0.9806(0.9790–0.9822) ◦ 0.9807(0.9790–0.9822) ◦

Naı̈ve Bayes 0.9306(0.9279–0.9331) ◦ 0.9222(0.9192–0.9247) ◦ 0.9240(0.9213–0.9266) ◦

Boosted NB 0.9751(0.9733–0.9766) ◦ 0.9497(0.9471–0.9523) ◦ 0.9483(0.9457–0.9507) ◦

Trees 0.9634(0.9605–0.9660) ◦ 0.9568(0.9537–0.9598) ◦ 0.9565(0.9532–0.9596) ◦

Boosted DT 0.9890(0.9877–0.9902) ◦ 0.9789(0.9770–0.9806) ◦ 0.9792(0.9774–0.9808) ◦

SMO 0.9419(0.9390–0.9447) ◦ 0.8301(0.8246–0.8350) ◦ 0.8232(0.8183–0.8278) ◦

- comparison dataset
◦ statistically significant improvement
• statistically significant degradation

The SMO classifier identifies all of the benign samples in resources.arsc for every

run and fold in the experiment. This identification leads to a false positive rate of 0.0

and a true negative rate of 1.0 as seen in Table 4.5. The decision boundary for the SMO

successfully classifies all of the benign samples, but this also includes 79.57% of the

malicious samples. Boosted decision tree and decision tree classifiers identify 347.0 of
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the malicious samples. The SMO is able to identify on average 257.3 samples from 10

runs.

Table 4.5: Confusion matrix rates for resources.arsc

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Naı̈ve Bayes 0.2071(0.2006–0.2140) 0.005477(0.005132–0.005867) 0.9945(0.9941–0.9948) 0.7928(0.7855–0.7996)

Boosted Decision Trees 0.2753(0.2676–0.2836) 0.003625(0.003341–0.003933) 0.9963(0.9960–0.9966) 0.7246(0.7165–0.7327)

Boosted Naı̈ve Bayes 0.2071(0.2005–0.2139) 0.005477(0.005106–0.005878) 0.9945(0.9941–0.9948) 0.7928(0.7852–0.8001)

SMO 0.2042(0.1974–0.2113) 0.0(0.0–0.0) 1.000(0.0–0.0) 0.7957(0.7886–0.8032)

Instance Based 0.2745(0.2669–0.2829) 0.003112(0.002852–0.003371) 0.9968(0.9966–0.9971) 0.7254(0.7168–0.7339)

Decision Trees 0.2753(0.2669–0.2834) 0.003625(0.003347–0.003922) 0.9963(0.9960–0.9966) 0.7246(0.7165–0.7329)

All of the classifiers in this experiment return low true positive rates. The best true

positive rate is 0.2754 with a confidence interval of 0.2672 to 0.2833 with the boosted

decision trees. The low classification rate may be due to only a few malware using the

resources.arsc in abnormal ways. Figure 4.3 shows distribution of the frequency of the

number of positive features in samples. The number of positive features is the number of

n-gram features in each sample. A sample may have from 0 to 500 positive features. A

majority of the samples on the benign side to Figure 4.3 have almost no positive features.

While the malicious side of Figure 4.3 is a bimodal distribution. The samples have either

almost no positive features or most of the features. The number of samples in the peaks of

these histograms matches the classification results of the classifiers.

Since the number of samples with high positive features is about the same as the

number of samples the classifiers identify as malicious, a relationship may exist. The

malicious dataset contains 222 samples with at least 450 positive features. All of the

samples are from only two families of malware of the 49 families in the dataset. Of the

222 samples, 139 are from the AnserverBot family and 83 are from the BaseBridge

family. Key elements of the resources.arsc files of the malware from these families
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Figure 4.3: Frequency of positive features of datasets for resources.arsc

must be different such that the n-grams in these files are not in other resources.arsc

files. The features that this experiment selects perform well for these two families, but fail

to detect other malicious applications.

4.4.2 classes.dex Results.

Observing the classes.dex feature source in comparison in Table 4.6 to the

other feature sources classes.dex has a statistically significant improvement over

resources.arsc. All of the other feature sources perform better than the classes.dex

with the exception of the combined and permission based feature sources. These sources

perform better, but not with statistical significance.

Observing the distribution of the samples and the number of positive features,

classes.dex has a similar distribution as the resources.arsc as seen in the Figure 4.4.

In the case with classes.dex the benign sample with the most positive features has 61

positive features. Looking at the samples with the highest number of positive features the
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Table 4.6: ROC area under the curve comparison to classes.dex

Dataset classes.dex Combined AndroidManifest.xml

IBk 0.9608(0.9587–0.9629) - 0.9808(0.9791–0.9824) ◦ 0.9841(0.9825–0.9857) ◦

Naı̈ve Bayes 0.8605(0.8564–0.8642) - 0.9114(0.9085–0.9140) ◦ 0.9306(0.9279–0.9331) ◦

Boosted NB’ 0.8351(0.8311–0.8393) - 0.9458(0.9432–0.9481) ◦ 0.9751(0.9733–0.9766) ◦

Decision Trees 0.9458(0.9430–0.9488) - 0.9556(0.9530–0.9580) 0.9634(0.9605–0.9660) ◦

Boosted DT 0.9550(0.9523–0.9575) - 0.9751(0.9731–0.9769) ◦ 0.9890(0.9877–0.9902) ◦

SMO 0.8139(0.8100–0.8182) - 0.8159(0.8119–0.8201) 0.9419(0.9390–0.9447) ◦

Dataset resources.arsc Full Permission Permission Tail

IBk 0.6738(0.6692–0.6782) • 0.9806(0.9790–0.9822) ◦ 0.9807(0.9790–0.9822) ◦

Naı̈ve Bayes 0.6140(0.6087–0.6187) • 0.9222(0.9192–0.9247) ◦ 0.9240(0.9213–0.9266) ◦

Boosted NB’ 0.6189(0.6142–0.6238) • 0.9497(0.9471–0.9523) ◦ 0.9483(0.9457–0.9507) ◦

Decision Trees 0.6568(0.6520–0.6613) • 0.9568(0.9537–0.9598) 0.9565(0.9532–0.9596)

Boosted DT 0.6817(0.6773–0.6858) • 0.9789(0.9770–0.9806) ◦ 0.9792(0.9774–0.9808) ◦

SMO 0.6021(0.5986–0.6058) • 0.8301(0.8246–0.8350) 0.8232(0.8183–0.8278)

- comparison dataset
◦ statistically significant improvement
• statistically significant degradation

top 309 all belong to the DroidKungFu3 family of malware. In the malicious set there are

only 309 samples of DroidKungFu3.

Investigating further into the number of positive features and the samples associated

with the counts there is a pattern of features and their families. In the malicious sample

set, 469 samples have more than 61 positive features. Of the 469 malicious samples from

this set, they are all members of the DroidKungFu families of malware. There are 473

samples in the DroidKungFu families. This shows that a majority of the features from

classes.dex are found in the DroidKungFu families.

Even though the samples with high feature counts are only with the DroidKungFu

family of malware, the feature source still has high true positive rates as a classifier in

comparison to the resources.arsc as seen in Table 4.7. The true positive rates for both

the naı̈ve Bayes and the boosted naı̈ve Bayes are 0.3734 which is smaller than the other
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Figure 4.4: Frequency of positive features of datasets for classes.dex

rates in the classes.dex feature source. The best true positive rate is from the boosted

decision trees with a rate of 0.81831.

Table 4.7: Confusion matrix rates for classes.dex

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Naı̈ve Bayes 0.3734(0.3657–0.3818) 0.0004222(0.0003316–0.0005160) 0.9995(0.9994–0.9996) 0.6265(0.6183–0.6350)

Boosted Decision Trees 0.8131(0.8067–0.8194) 0.003963(0.003623–0.004295) 0.9960(0.9956–0.9963) 0.1868(0.1803–0.1930)

Boosted Naı̈ve Bayes 0.3734(0.3648–0.3813) 0.0004222(0.0003301–0.0005222) 0.9995(0.9994–0.9996) 0.6265(0.6179–0.6352)

SMO 0.6279(0.6198–0.6353) 0.0001206(6.968e-05–0.0001667) 0.9998(0.9998–0.9999) 0.3720(0.3645–0.3792)

Instance Based 0.7754(0.7684–0.7825) 0.004578(0.004250–0.004914) 0.9954(0.9951–0.9957) 0.2245(0.2173–0.2317)

Decision Trees 0.7952(0.7873–0.8027) 0.006490(0.006104–0.006890) 0.9935(0.9931–0.9939) 0.2047(0.1972–0.2116)

4.4.3 AndroidManifest.xml results.

The AndroidManifest.xml has a higher ROC AUC for each classifier in comparison

to the other feature sources as seen in Table 4.8. The instance based learner performs better,
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but not with significance between the combined and the permission based feature sources.

The ROC AUC is higher with the instance based learner with 0.9841 in comparison to the

boosted decision trees with 0.9634.

Table 4.8: ROC area under the curve comparison to AndroidManifest.xml

Dataset AndroidManifest.xml Combined classes.dex

IBk 0.9841(0.9825–0.9857) - 0.9808(0.9791–0.9824) 0.9608(0.9587–0.9629) •

Naı̈ve Bayes 0.9306(0.9279–0.9331) - 0.9114(0.9085–0.9140) • 0.8605(0.8564–0.8642) •

Boosted NB’ 0.9751(0.9733–0.9766) - 0.9458(0.9432–0.9481) • 0.8351(0.8311–0.8393) •

Decision Trees 0.9634(0.9605–0.9660) - 0.9556(0.9530–0.9580) 0.9458(0.9430–0.9488) •

Boosted DT 0.9890(0.9877–0.9902) - 0.9751(0.9731–0.9769) • 0.9550(0.9523–0.9575) •

SMO 0.9419(0.9390–0.9447) - 0.8159(0.8119–0.8201) • 0.8139(0.8100–0.8182) •

Dataset resources.arsc Full Permission Permission Tail

IBk 0.6738(0.6692–0.6782) • 0.9806(0.9790–0.9822) 0.9807(0.9790–0.9822)

Naı̈ve Bayes 0.6140(0.6087–0.6187) • 0.9222(0.9192–0.9247) • 0.9240(0.9213–0.9266)

Boosted NB’ 0.6189(0.6142–0.6238) • 0.9497(0.9471–0.9523) • 0.9483(0.9457–0.9507) •

Decision Trees 0.6568(0.6520–0.6613) • 0.9568(0.9537–0.9598) 0.9565(0.9532–0.9596)

Boosted DT 0.6817(0.6773–0.6858) • 0.9789(0.9770–0.9806) • 0.9792(0.9774–0.9808) •

SMO 0.6021(0.5986–0.6058) • 0.8301(0.8246–0.8350) • 0.8232(0.8183–0.8278) •

- comparison dataset
◦ statistically significant improvement
• statistically significant degradation

The distributions of the benign samples with positive features for the AndroidManifest.xml

are not as skewed as the histograms for the resources.arsc or classes.dex as seen in

Figure 4.5. The malicious histogram shows a spike of 145 samples that have 375 of the

positive features. All 145 of the samples are in the Anserverbot family of malware.

Unlike the other feature sources, the high number of features associated with a specific

malware family does not influence the true positive results. The true positive rates for

the AndroidManifest.xml are much higher as seen in Table 4.9. The feature source

has a true positive rate of 91.69% with the boosted decision trees and a 91.97% for the
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Figure 4.5: Frequency of positive features of datasets for AndroidManifest.xml

instance based learner. The high true positive rates and the low false positives show that

the AndroidManifest.xml is the best feature source in the experiment.

Table 4.9: Confusion matrix rates for AndroidManifest.xml

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Naı̈ve Bayes 0.8153(0.8077–0.8225) 0.07836(0.07742–0.07935) 0.9216(0.9206–0.9225) 0.1846(0.1775–0.1918)

Boosted decision trees 0.9169(0.9119–0.9224) 0.001918(0.001689–0.002126) 0.9980(0.9978–0.9983) 0.08301(0.07752–0.08878)

Boosted Naı̈ve Bayes 0.8726(0.8665–0.8788) 0.02978(0.02737–0.03222) 0.9702(0.9678–0.9724) 0.1273(0.1210–0.1334)

SMO 0.8847(0.8792–0.8903) 0.001055(0.0008890–0.001228) 0.9989(0.9987–0.9991) 0.1152(0.1098–0.1210)

Instance based 0.9197(0.9148–0.9243) 0.007293(0.006890–0.007687) 0.9927(0.9923–0.9930) 0.08023(0.07557–0.08479)

Decision trees 0.9052(0.8995–0.9108) 0.008638(0.008150–0.009135) 0.9913(0.9908–0.9918) 0.09476(0.08861–0.1003)

4.4.4 Instance Based Classifier Results.

The instance based classifier saves each of the samples from the training set

and compares each of the test samples to the training samples to find the closest
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match. Table 4.10 shows that the resources.arsc has a low TP rate. The

AndroidManifest.xml has the highest true positive rate with the instance based classifier.

Table 4.11 shows the instance based classifier only classifies on average 345.9 of the 1,260

malicious samples correctly with the resources.arsc. The resources.arsc has an

average accuracy of 0.945 with the 95% confidence interval of 0.9453 to 0.9465. Both of

the permission types have the same rates of classification except that the full permissions

misclassifies on average 5.5 of the benign samples as malicious.

Table 4.10: Confusion matrix rates for instance based

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Combined 0.8808(0.8758–0.8858) 0.01605(0.01541–0.01666) 0.9839(0.9833–0.9845) 0.1191(0.1136–0.1242)

classes.dex 0.7754(0.7684–0.7825) 0.004578(0.004250–0.004914) 0.9954(0.9951–0.9957) 0.2245(0.2173–0.2317)

AndroidManifest.xml 0.9197(0.9149–0.9241) 0.007293(0.006887–0.007667) 0.9927(0.9923–0.9930) 0.08023(0.07517–0.08497)

Permissions full 0.8845(0.8791–0.8904) 0.008765(0.008356–0.009158) 0.9912(0.9907–0.9916) 0.1154(0.1101–0.1206)

Permissions tail 0.8844(0.8790–0.8899) 0.008433(0.008023–0.008837) 0.9915(0.9911–0.9919) 0.1155(0.1101–0.1209)

resources.arsc 0.2745(0.2669–0.2829) 0.003112(0.002852–0.003371) 0.9968(0.9966–0.9971) 0.7254(0.7168–0.7339)

Table 4.11: Confusion matrix data for instance based with 95% CI

True Positives False Positives True Negatives False Negatives

Combined 1,109.9(1,109.0977–1,110.9) 266.1(262.5045–269.72) 16,310.9(16,307.2818–16,314.5) 150.1(149.1208–150.83)

classes.dex 977.1(974.862–979.81) 75.9(73.0554–78.63) 16,501.1(16,498.2633–16,504.27) 282.9(280.3577–285.37)

AndroidManifest.xml 1,158.9(1,156.9857–1,160.66) 120.9(117.9327–123.45) 16,456.1(16,453.7898–16,458.87) 101.1(99.2847–102.98)

Permissions full 1,114.5(1,111.6749–1,117.05) 145.3(143.361–147.6) 16,431.7(16,429.3411–16,433.81) 145.5(143.0471–148.45)

Permissions tail 1,114.4(1,111.4635–1,116.67) 139.8(138.1525–141.78) 16,437.2(16,435.4611–16,438.88) 145.6(143.2455–148.53)

resources.arsc 345.9(345.9–346.06) 51.6(50.3145–52.67) 16,525.4(16,524.3199–16,526.56) 914.1(913.9382–914.1)

The Table 4.12 compares the instance based learner performance for each feature

source to the performances in the other classifiers. Weka calculates the statistical

comparison using a corrected paired t-test with 0.05 significance. The table identifies the
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comparison class with a symbol next to the confidence interval. The presence of the bullet

indicate that naı̈ve Bayes, boosted naı̈ve Bayes, decision trees, and SMO all perform worse

than the instance based learner for all feature sources. The only classifier in this test that

significantly performs better is the boosted decision trees for AndroidManifest.xml and

resources.arsc.

Table 4.12: ROC area under the curve comparing instance based learner to other classifiers

Dataset IBk Naı̈ve Bayes Boosted NB

Combined 0.9808(0.9791–0.9824) - 0.9114(0.9085–0.9140) • 0.9458(0.9432–0.9481) •

classes.dex 0.9608(0.9587–0.9629) - 0.8605(0.8564–0.8642) • 0.8351(0.8311–0.8393) •

AndroidManifest.xml 0.9841(0.9825–0.9857) - 0.9306(0.9279–0.9331) • 0.9751(0.9733–0.9766) •

resources.arsc 0.6738(0.6692–0.6782) - 0.6140(0.6087–0.6187) • 0.6189(0.6142–0.6238) •

Full Permission 0.9806(0.9790–0.9822) - 0.9222(0.9192–0.9247) • 0.9497(0.9471–0.9523) •

Permission Tail 0.9807(0.9790–0.9822) - 0.9240(0.9213–0.9266) • 0.9483(0.9457–0.9507) •

Dataset Decision Trees Boosted DT SMO

Combined 0.9556(0.9530–0.9580) • 0.9751(0.9731–0.9769) • 0.8159(0.8119–0.8201) •

classes.dex 0.9458(0.9430–0.9488) • 0.9550(0.9523–0.9575) 0.8139(0.8100–0.8182) •

AndroidManifest.xml 0.9634(0.9605–0.9660) • 0.9890(0.9877–0.9902) ◦ 0.9419(0.9390–0.9447) •

resources.arsc 0.6568(0.6520–0.6613) • 0.6817(0.6773–0.6858) ◦ 0.6021(0.5986–0.6058) •

Full Permission 0.9568(0.9537–0.9598) • 0.9789(0.9770–0.9806) 0.8301(0.8246–0.8350) •

Permission Tail 0.9565(0.9532–0.9596) • 0.9792(0.9774–0.9808) 0.8232(0.8183–0.8278) •

- comparison dataset
◦ statistically significant improvement
• statistically significant degradation

4.4.5 Naı̈ve Bayes Results.

The naı̈ve Bayes classifier does not perform as well as the instance based learner.

Observing the information independently from the other classifiers the best feature source

is still the AndroidManifest.xml with the highest true positive rate as seen in Table 4.13.

Naı̈ve Bayes has the lowest false positive rate of all of the classifiers. Both the

classes.dex and the combined file only had seven false positives.
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Table 4.13: Confusion matrix rates for naı̈ve Bayes

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Combined 0.3738(0.3656–0.3823) 0.0002412(0.0001684–0.0003240) 0.9997(0.9996–0.9998) 0.6261(0.6183–0.6341)

classes.dex 0.3734(0.3657–0.3818) 0.0004222(0.0003316–0.0005160) 0.9995(0.9994–0.9996) 0.6265(0.6183–0.6350)

AndroidManifest.xml 0.8153(0.8082–0.8229) 0.07836(0.07740–0.07932) 0.9216(0.9205–0.9226) 0.1846(0.1774–0.1919)

Permissions full 0.6678(0.6583–0.6772) 0.04485(0.04377–0.04596) 0.9551(0.9541–0.9561) 0.3321(0.3229–0.3413)

Permissions tail 0.6980(0.6892–0.7060) 0.04718(0.04608–0.04823) 0.9528(0.9517–0.9539) 0.3019(0.2937–0.3108)

resources.arsc 0.2071(0.2006–0.2140) 0.005477(0.005132–0.005867) 0.9945(0.9941–0.9948) 0.7928(0.7855–0.7996)

Even though the AndroidManifest.xml has the highest true positive rate of the

feature sources, the classes.dex and combined feature sources have the highest accuracy

as seen in Table 4.14. The high accuracy is due to the classifier’s ability to classify the

benign samples. The classes.dex and the combined files classify the benign samples

positively at a rate of 0.9995 and 0.9997. The high true negative rate is from the distribution

of features as discussed in 4.4.2. In the Kolter and Maloof experiments the naı̈ve Bayes

classifier is the worst performer [29]. Comparing the area under the curve performance

naı̈ve Bayes only performs better than the SMO classifier with the exception of the

AndroidManifest.xml.

Table 4.14: Accuracy for naı̈ve Bayes

Mean ( 95% CI )

Combined 0.9555 (0.955-0.9561)

classes.dex 0.9553 (0.9548-0.9559)

AndroidManifest.xml 0.9141 (0.9131-0.9152)

Permissions full 0.9348 (0.9335-0.936)

Permissions tail 0.9348 (0.9337-0.936)

resources.arsc 0.9389 (0.9383-0.9395)
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4.4.6 Boosted Naı̈ve Bayes Results.

The goal of boosting a machine learning algorithm is to minimize the error to obtain

better results. The first boosted algorithm in the experiment is boosting naı̈ve Bayes. The

accuracies of the boosted naı̈ve Bayes with the resources.arsc and the classes.dex

performs the similar to these features in the unboosted naı̈ve Bayes. The results are the

same as seen in Table 4.15.

Table 4.15: Accuracy comparison between naı̈ve Bayes and boosted naı̈ve Bayes

naı̈ve Bayes Boosted naı̈ve Bayes

Combined 0.9555(0.955-0.9561) 0.958 (0.9569-0.9592)

classes.dex 0.9553(0.9548-0.9559) 0.9553 (0.9548-0.9559)

AndroidManifest.xml 0.9141 (0.9131-0.9152) 0.9633 (0.9613-0.9653)

Permissions full 0.9348 (0.9335-0.936) 0.9602 (0.9592-0.9611)

Permissions tail 0.9348 (0.9337-0.936) 0.9603 (0.9595-0.9611)

resources.arsc 0.9389 (0.9383-0.9395) 0.9389 (0.9383-0.9395)

Since boosting reduces the error on classifiers, the boosted classifier should perform

better. The accuracy increases, but the ROC AUC decreases for the classes.dex feature

source. The ROC AUC for boosted naı̈ve Bayes is .8351 and .8605 for naı̈ve Bayes. This

comparison shows a degradation in the classification. The ROC in Figure 4.6 illustrates the

area under the curve for boosted naı̈ve Bayes is lower. The boosted naı̈ve Bayes ROC has a

higher false positive rate when covering more true positive samples leads to the difference

in ROC values.

Boosting naı̈ve Bayes reduces the number of false positives for the AndroidManifest.xml

by almost one-third and increases the true positive rate. Considering that, the combined file

consists of 95% of the classes.dex source, the true positive results increase from 471 to 714

samples. The number of true positives decreases in the permission sources, but their false

positive rate reduces more than one-third from the naı̈ve Bayes.
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Figure 4.6: ROC of classes.dex comparing classifiers

The changes in the true positive and false positive rates change the ROC AUC. The

overall best source for boosted naı̈ve Bayes is still the AndroidManifest.xml with an

AUC of 0.9751. The worst performer is still the resources.arsc with only an increase

from 0.6140 with naı̈ve Bayes to 0.6189 with boosted naı̈ve Bayes as seen in Table 4.16.

Table 4.16: Comparison of mean ROC for boosted naı̈ve Bayes with 95% CI

boosted naı̈ve Bayes naı̈ve Bayes

Combined 0.9458 (0.9432–0.9481) 0.9114 (0.9085–0.9140)

classes.dex 0.8351 (0.8311–0.8393) 0.8605 (0.8564–0.8642)

AndroidManifest.xml 0.9751 (0.9733–0.9766) 0.9306 (0.9279–0.9331)

resources.arsc 0.6189 (0.6142–0.6238) 0.6140 (0.6087–0.6187)

Full Permission 0.9497 (0.9471–0.9523) 0.9222 (0.9192–0.9247)

Permission Tail 0.9483 (0.9457–0.9507) 0.9240 (0.9213–0.9266)

52



4.4.7 Decision Trees Results.

In this experiment, decision trees have a higher ROC AUC than the SMO and

naı̈ve Bayes as seen in Table 4.17. The AndroidManifest.xml is the best feature

source for decision trees, but has a better AUC with the boosted naı̈ve Bayes. The

AndroidManifest.xml feature source has an AUC of 0.9634 and detects 90.52% of

the malicious applications. In previous classifiers, the AndroidManifest.xml has the

best performance of the feature sources. The permission based feature sources and the

AndroidManifest.xml have similar accuracies with the means falling within the other’s

confidence intervals as seen in Table 4.18.

Table 4.17: ROC AUC comparison decision trees, naı̈ve Bayes, and SMO with 95% CI

Dataset Decision Trees Naı̈ve Bayes SMO

Combined 0.9556 (0.9530–0.9580) 0.9114 (0.9085–0.9140) 0.8159 (0.8119–0.8201)

classes.dex 0.9458 (0.9430–0.9488) 0.8605 (0.8564–0.8642) 0.8139 (0.8100–0.8182)

AndroidManifest.xml 0.9634 (0.9605–0.9660) 0.9306 (0.9279–0.9331) 0.9419 (0.9390–0.9447)

resources.arsc 0.6568 (0.6520–0.6613) 0.6140 (0.6087–0.6187) 0.6021 (0.5986–0.6058)

Full Permission 0.9568 (0.9537–0.9598) 0.9222 (0.9192–0.9247) 0.8301 (0.8246–0.8350)

Permission Tail 0.9565 (0.9532–0.9596) 0.9240 (0.9213–0.9266) 0.8232 (0.8183–0.8278)

Table 4.18: Accuracy for decision trees

Mean ( 95% CI )

Combined 0.9834 (0.9829-0.9839)

classes.dex 0.9795 (0.9789-0.9802)

AndroidManifest.xml 0.9853 (0.9847-0.9859)

Permissions full 0.9854 (0.9848-0.9859)

Permissions tail 0.9853 (0.9847-0.9858)

resources.arsc 0.9454 (0.9448-0.946)
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4.4.8 Boosted Decision Trees Results.

The boosted decision tree is the best performing classifier compared to the other

classifiers using the feature sources in this experiment with the exception of classes.dex

and the combined feature source. In this case the mean AUC for the combined feature

source for the instance based classifier is 0.9808 and is only 0.9751 for the boosted decision

tree as seen in Table 4.19. As for the classes.dex the mean AUC for the instance based

classifier is 0.9608 and 0.9550 for boosted trees. The best combination of feature source

and classifier in this overall experiment is the AndroidManifest.xmlwith the boosted

decision tree.

Table 4.19: ROC AUC comparison of decision trees, boosted DT, and IBk with 95% CI

Dataset Decision Trees Boosted Decision Trees IBk

Combined 0.9556 (0.9530–0.9580) 0.9751 (0.9731–0.9769) 0.9808 (0.9791–0.9824)

classes.dex 0.9458 (0.9430–0.9488) 0.9550 (0.9523–0.9575) 0.9608 (0.9587–0.9629)

AndroidManifest.xml 0.9634 (0.9605–0.9660) 0.9890 (0.9877–0.9902) 0.9841 (0.9825–0.9857)

resources.arsc 0.6568 (0.6520–0.6613) 0.6817 (0.6773–0.6858) 0.6738 (0.6692–0.6782)

Full Permission 0.9568 (0.9537–0.9598) 0.9789 (0.9770–0.9806) 0.9806 (0.9790–0.9822)

Permission Tail 0.9565 (0.9532–0.9596) 0.9792 (0.9774–0.9808) 0.9807 (0.9790–0.9822)

The AndroidManifest.xml has a true positive rate of 0.9169 with the boosted

decision tree, which is not as successful as the true positive rate from the instance based

learner with 0.9197. Even though the instance based learner has a higher true positive rate,

the overall accuracy of the boosted decision tree with AndroidManifest.xml is 0.9924

which is higher than the accuracy of the instance based classifier with 0.9876 as seen in

Table 4.20. Unlike the comparison between naı̈ve Bayes and boosted naı̈ve Bayes, the

boosting of the decision trees improves the classifier.
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Table 4.20: Mean accuracies of decision trees, boosted DT, and IBk with 95% CI

Decision Trees Boosted Decision Trees IBk

Combined 0.9834 (0.9829-0.9839) 0.9881(0.9876-0.9885) 0.9767 (0.976-0.9773)

classes.dex 0.9795 (0.9789-0.9802) 0.9831 (0.9827-0.9836) 0.9799 (0.9794-0.9805)

AndroidManifest.xml 0.9853 (0.9847-0.9859) 0.9924 (0.9919-0.9928) 0.9876 (0.987-0.988)

Permissions full 0.9854 (0.9848-0.9859) 0.9887 (0.9883-0.9892) 0.9837 (0.9831-0.9842)

Permissions tail 0.9853(0.9847-0.9858) 0.9888 (0.9883-0.9893) 0.984 (0.9835-0.9845)

resources.arsc 0.9454 (0.9448-0.946) 0.9454 (0.9448-0.946) 0.9459 (0.9452-0.9464)

4.4.9 SMO Results.

The last classifier in this experiment is the SMO, which is an optimization of the

SVM algorithm.SMO did not perform as well as the other classifiers in this experiment.

Only the AndroidManifest.xml feature source has a true positive rate above 0.80 with

a true positive rate of 0.8874 as seen in Table 4.21. The low true positive rate for the

resources.arsc is due to the features in the resources.arsc favoring a specific family

of malware as explained in 4.4.1.

Table 4.21: Confusion matrix rates for SMO

Confusion Matrix Rates with 95% CI

TPR FPR TNR FNR

Combined 0.6319(0.6245–0.6394) 0.0001206(7.506e-05–0.0001742) 0.9998(0.9998–0.9999) 0.3680(0.3597–0.3761)

classes.dex 0.6279(0.6204–0.6354) 0.0001206(7.509e-05–0.0001667) 0.9998(0.9998–0.9999) 0.3720(0.3640–0.3799)

AndroidManifest.xml 0.8847(0.8792–0.8903) 0.001055(0.0008890–0.001228) 0.9989(0.9987–0.9991) 0.1152(0.1098–0.1210)

Permissions full 0.6665(0.6548–0.6766) 0.006352(0.005976–0.006713) 0.9936(0.9932–0.9940) 0.3334(0.3233–0.3440)

Permissions tail 0.6525(0.6421–0.6620) 0.006044(0.005660–0.006400) 0.9939(0.9935–0.9943) 0.3474(0.3373–0.3573)

resources.arsc 0.2042(0.1975–0.2110) 0.0(0.0–0.0) 1.000(0.0–0.0) 0.7957(0.7892–0.8028)

The highest parsing method is the AndroidManifest.xml with an AUC of 0.935.

The lowest performing parsing method is the resources.arsc with an AUC of 0.616 as

seen in Table 4.22. In the Kolter and Maloof experiments, SMO is the second best classifier

with large data sets [29]. In this experiment, SMO is the worst performing classifer.
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Table 4.22: ROC AUC for SMO classifier

Dataset Mean (95% CI)

Combined 0.8159 (0.8119–0.8201)

classes.dex 0.8139 (0.8100–0.8182)

AndroidManifest.xml 0.9419 (0.9390–0.9447)

resources.arsc 0.6021 (0.5986–0.6058)

Full Permission 0.8301 (0.8246–0.8350)

Permission Tail 0.8232 (0.8183–0.8278) ]

4.5 Summary

The best feature source/classifier pair in this experiment is the AndroidManifest.xml

with boosted decision trees. This classification pair classifies with high accuracy rates and

ROC AUC. The mean of the ROC AUC is 0.9890 with a 95% confidence interval between

0.9877 and 0.9902 and the accuracy is 99.24% with a 95% confidence interval of 99.19%

to 99.28%.

The worst feature source in this set of experiments is the resources.arsc. Looking

at the information gain levels from Section 4.3, the top n-grams have low information gain

and almost constant information gain for all 500 selected n-grams. The resources.arsc

performs poorly compared to the other feature sources when applied to the classifiers. The

feature source’s highest true positive rate is never higher than 0.2753 with the decision

trees. The highest mean AUC for the resources.arsc is never higher than 0.6817. These

poor results may be due to the resources.arsc features belonging to a specific malware

family.

The hypothesis is that the classes.dex and the combined feature source are the

highest performers. Since the classes.dex contains the byte code for the application

to operate, the hypothesis includes that this method would be a good feature source for

classification decisions. The top n-grams from each source are in the combined file, but

this was 95.8% of the n-grams in the top 500 n-grams of the classes.dex files. From
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this, the hypothesis is that the combined file performs similar to the classes.dex. In all

classifiers, the combined feature source performs better than the classes.dex. The 19

n-grams from the AndroidManifest.xml increase the performance of the feature source.

The best performing feature sources in this experiment are the AndroidManifest.xml

and the permission-based methods. Many of the services that the Android malware exploits

attempt to access services that require permissions. The permissions with the highest infor-

mation gain values associate with SMS and RECEIVE BOOT COMPLETED. Through chaining

the n-grams in the AndroidManifest.xml these same permissions have high information

gain values. These three feature sources performed the best during classification. They per-

formed well with the instance based learner and with boosted decision trees. According to

Zhou, malware has a high tendency to use these permissions more than benign applications

[50].
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V. Conclusion

The primary goal of this research is to classify Android applications as either

malicious or benign. Achieving this goal requires identification of a salient feature source

to perform the classification. This research examines the effectiveness of n-grams on a

variety of Android application feature sources. This experiment uses the n-grams features

with the highest information gain values as the selected feature set. In addition to these

sources, the permissions of the applications are also in the experiments.

This experiment identifies the AndroidManifest.xml as the best feature source

compared to the other selected feature sources. The secondary goal of this research is

to identify a classifier that produces the highest accuracy and ROC AUC performance

metrics. Through testing six classifiers with the six feature sources produces 36 different

experiments to compare. In the 36 experiments, the Android manifest file with the boosted

decision trees returns the highest ROC AUC of 0.9890 and a mean accuracy of 99.24%.

The AndroidManifest.xml file is smaller than other files in the application such as

the classes.dex. This smaller size allows the feature extractor to parse through the file for

textitn-grams quickly. The AndroidManifest.xml performs better than the hypothesis of

the combined feature source.

The last goal of the research is to identify if sequences of n-grams are associated

more with malware than other n-grams. Analysis of the AndroidManifest.xml n-

grams show that the sequences of n-grams are associated with the permissions and actions

of malware samples. Analysis shows that the BOOT COMPLETED was found in multiple

malware samples.
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5.1 Contributions

This research contributes by identifying a feature source within the Android

application to classify samples with high rates. The use of n-grams to create features from

the AndroidManifest.xml file performs better than permission based feature selection.

The feature source did not just work for one classifier, but provides high classification rates

with both boosted decision trees and the instance based classifier.

5.2 Future Work

A limitation on this research is the low number of malicious samples. At the beginning

of this research, large data sets of Android malware samples did not exist. The Malware

Genome project released a large malicious sample set that allowed for this research to occur

[50]. Until this point, researchers had to create their own samples or test with the small sets

available [45, 49]. A recommendation for future work includes continuing the research as

the number of known malware sample increases.

Possible future work includes implementing this research during application distribu-

tion to prevent users from downloading malicious applications to their devices. In addition,

other implementations of this research may detect malicious applications directly on the

device. Training requires a large amount of memory that is not available to Android de-

vices. The retraining of new samples may occur off the device while detection occurs on

the device.

One of the feature sources in this experiment is a combined file with the n-grams

with the highest information gain values from the three file based sources. A majority

of the n-grams in this feature source are from the classes.dex and no features from

the resources.arsc. Other combinations of feature sources may provide a better

classification rate.
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Appendix A: Classifier and Feature Source ROC Graphs

Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.7, A.8, A.9, A.10, A.11, and A.12 are

the ROC curve graphs for the classifiers and feature sources in Section 4.4.
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Figure A.2: ROC curve for naı̈ve Bayes
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Figure A.3: ROC curve for decision trees
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Figure A.4: ROC curve for SMO
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Figure A.5: ROC curve for boosted naı̈ve Bayes
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Figure A.6: ROC curve for boosted decision trees
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Figure A.7: ROC curve for the combined feature source
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Figure A.8: ROC curve for the classes.dex feature source
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Figure A.9: ROC curve for the AndroidManifest.xml feature source
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Figure A.10: ROC curve for the resources.arsc feature source
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Figure A.11: ROC curve for the full permissions feature source
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Figure A.12: ROC curve for the permissions tail feature source
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Appendix B: Confusion Matrix Data for Classifiers and Feature Sources

Tables B.1, B.2, B.3, B.4, and B.5 are the confusion matrix data results for each of the

classifiers in Section 4.4.

Table B.1: Confusion matrix data for naı̈ve Bayes with 95% confidence intervals

True Positives False Positives True Negatives False Negatives

Combined 471.0(0.0–0.0) 4.0(0.0–0.0) 16,573.0(0.0–0.0) 789.0(0.0–0.0)

classes.dex 470.5(470.1646–470.84) 7.0(6.2633–7.67) 16,570.0(16,569.3326–16,570.74) 789.5(789.1646–789.84)

AndroidManifest.xml 1,027.3(1,026.2327–1,028.43) 1,299.0(1,297.4187–1,300.45) 15,278.0(15,276.7415–15,279.61) 232.7(231.5673–233.89)

Permissions full 841.5(839.8904–842.97) 743.6(740.5617–745.91) 15,833.4(15,831.2426–15,835.99) 418.5(417.0149–420.14)

Permissions tail 879.5(877.8301–881.11) 782.1(780.0329–784.0) 15,794.9(15,792.957–15,797.04) 380.5(378.8833–382.15)

resources.arsc 261.0(0.0–0.0) 90.8(90.6845–91.07) 16,486.2(16,485.9317–16,486.32) 999.0(0.0–0.0)

Table B.2: Confusion matrix data for boosted naı̈ve Bayes with 95% confidence intervals

True Positives False Positives True Negatives False Negatives

Combined 703.9(679.7699–727.44) 192.5(178.9837–207.66) 16,384.5(16,370.3888–16,398.88) 556.1(531.2016–580.41)

classes.dex 470.5(470.1646–470.84) 7.0(6.2633–7.61) 16,570.0(16,569.3292–16,570.74) 789.5(789.1646–789.84)

AndroidManifest.xml 1,099.6(1,094.4357–1,104.8) 493.8(467.9354–526.69) 16,083.2(16,049.9685–16,108.05) 160.4(154.8581–165.35)

Permissions full 817.9(806.9329–827.86) 268.1(263.7766–272.26) 16,30,8.9(16,304.9997–16,313.27) 442.1(431.8123–451.4)

Permissions tail 825.4(820.1378–831.11) 274.3(267.6991–280.73) 16,302.7(16,296.1963–16,309.39) 434.6(427.5188–440.5)

resources.arsc 261.0(0.0–0.0) 90.8(90.6845–91.07) 16,486.2(16,485.9317–16,486.32) 999.0(0.0–0.0)
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Table B.3: Confusion matrix data for decision trees with 95% confidence intervals

True Positives False Positives True Negatives False Negatives

Combined 1,128.0(1,124.71–1,131.38) 163.5(159.5745–168.2) 16,413.5(16,408.5037–16,418.12) 132.0(128.3806–135.28)

classes.dex 1,002.0(998.8636–1,005.21) 107.6(103.6203–111.79) 16,469.4(16,464.841–16473.44) 258.0(255.0396–261.35)

AndroidManifest.xml 1,140.6(1,137.1514–1,145.2) 143.2(136.7714–149.88) 16,433.8(16,426.6187–16,439.23) 119.4(114.6722–122.99)

Permissions full 1,123.0(1,121.1932–1,124.62) 124.3(119.4518–129.9) 16,452.7(16,447.2976–16,457.26) 137.0(135.2787–138.92)

Permissions tail 1,124.2(1,121.2991–1,125.86) 127.0(123.4571–132.53) 16,450.0(16,444.8617–16,453.6) 135.8(134.1627–138.64)

resources.arsc 347.0(344.3466–348.98) 60.1(56.9252–62.98) 16,516.9(16,514.263–16,519.9) 913.0(910.8268–915.5)

Table B.4: Confusion matrix data for boosted decision trees with 95% confidence intervals

True Positives False Positives True Negatives False Negatives

Combined 1,121.2(1,117.4387–1,124.6) 74.2(70.1141–79.02) 16,502.8(16,498.0996–16,507.04) 138.8(135.8226–142.31)

classes.dex 1,024.6(1,023.0308–1,025.94) 65.7(60.8121–70.52) 16,511.3(16,506.0899–16,516.73) 235.4(234.1389–236.97)

AndroidManifest.xml 1,155.4(1,152.7209–1,158.14) 31.8(29.502–34.01) 16,545.2(16,542.99–16,547.6) 104.6(101.933–107.42)

Permissions full 1,138.3(1,135.3724–1,140.79) 79.2(76.6101–81.43) 16,497.8(16,495.5934–16,500.4) 121.7(119.2144–124.76)

Permissions tail 1,137.7(1,132.451–1,140.85) 77.9(73.1983–82.53) 16,499.1(16,494.6218–16,503.56) 122.3(118.771–126.95)

resources.arsc 347.0(344.3466–348.96) 60.1(57.2897–62.69) 16,516.9(16,514.3651–16,519.85) 913.0(910.9073–915.65)

Table B.5: Confusion matrix data for SMO with 95% confidence intervals

True Positives False Positives True Negatives False Negatives

Combined 796.3(793.5084–798.74) 2.0(0.0–0.0) 16,575.0(0.0–0.0) 463.7(461.3317–466.39)

classes.dex 791.2(787.5885–793.58) 2.0(0.0–0.0) 16,575.0(0.0–0.0) 468.8(466.2285–472.55)

AndroidManifest.xml 1,114.8(1,113.1085–1,116.54) 17.5(16.1249–18.67) 16,559.5(16,558.2506–16,560.83) 145.2(143.4189–146.88)

Permissions full 839.8(836.7783–844.43) 105.3(102.4681–108.12) 16,471.7(16,469.1739–16,474.4) 420.2(415.9707–423.25)

Permissions tail 822.2(819.0974–825.5) 100.2(98.0826–103.02) 16,476.8(16,474.4088–16,479.16) 437.8(434.1522–441.18)

resources.arsc 257.3(257.0098–257.55) 0.0(0.0–0.0) 16,577.0(0.0–0.0) 1,002.7(1,002.4528–1002.99)
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